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Multigroup Diffusion Package in ALE3D
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Motivation: Simulate (rapid) heating and cooling of SiO, for
damage mitigation on final NIF optics

General application: energy transport in refractive lossy media

Radiation, although often ignored in relatively low temperature
regimes (7' < 8000 °K) due to its low energy content, is still an
efficient vehicle for energy (heat) transport and loss

Examples:
e Campfire on a cold night
e Heat leakage through evacuated part of thermos

e Cooling of hot glass
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Outline

Typical experiment
Derivation of ALE3D radMGDiff equations

Boundary and interface conditions

Material properties (SiO3)
Results

- 1D Slab cooling
- 1D Comparison with Lasnex

¢ Ongoing work; open questions
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Damage mitigation (courtesy M. Matthews et al)
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Experimental setup (courtesy S. Yang, LLNL)
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Photon propagation (Pomraning)
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Substitute

f =1 explilk-r—wt)], w=w(rk,t)+iwi(rk,t)
into Maxwell’s equations. Get...
Motion of wave packet (Hamilton’s equations) =

Equations of photon propagation (w, = 27v):

dr/ds =
dQ/ds = (1/n)[Vn —Q(Q2-Vn)]
dv/ds = —(v/c)oin

dr/dt = v, Q
Refractive index n = cky, /w, ky = |K]|
Homogeneous medium: (Vn, 9yn =0) = (dv/ds, dQ2/ds = 0)
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Derivation of ALE3D diffusion equations
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Add emission, absorption to Pomraning’s streaming operator
Assume homogeneous medium (Vn =0 = 0yn)

n? [(1/vg) 0(I/n%) + Q- V(I/n?)] = K [n® B,(T) — I
2h13 /2
exp(hv/kgT) — 1

vg = group speed; phase speed v, = ¢/n
1/vy = (0ky/Ow) = (n +vO,n)/c = 1/v, + (vO,n)/c

h, kg = Planck, Boltzmann constants

B,(T) =

opacity k = 4rk/\, wavelength A\ = ¢/v

(n, k) = dimensionless (refractive, absorption) indexes

(2



Intensity moments

Spectral energy density F, flux F, and pressure tensor P:
E = (1/vg) dw I
am

F = /dwﬂ[
47

(1/vg) | dwQ2QIT,
an

ol
Il

Take moments of intensity equation

Close system: ignore 0;(F/n?) and P (E/3)T

(5
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ALE3D RadMGDiff module solves
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OE =V ;}—QVE-I-FL’UQ [47 n? B,(T)/v, — E]
K

[ee]
pcy OT =V -k, VT + S—/ dv kvy [41n? B,(T) /vy — E]
S~—_—— —
op—split vo

vg = vg(v, n); (until have better data, vy = v, = ¢/n)
n = n(v) = refractive index
k = k(v) = absorption index; k = 4nk/\ = 4rkv/c;
S = external energy source (laser)
vg = upper bound of opaque interval (Larsen et al)

Usual multigroup diffusion: vy — ¢, n — 1
LTE: E depends on T and material-dependent n, v,
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Boundary & (Interior) Interface conditions

Oy
mat b
Op,i o
n, z
9(1,7‘
mat a
Qa,t
Qa,r Qb,r

Qa,i - Qa,r + Qa,t
Qi — Oy, (total reflection)
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Reflectivity, boundary, interface conditions
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Reflected fraction of incident intensity /(;) obtained from
Snell’s law(s), energy conservation, Maxwell’s equations

Snell’s law(s) relate incident, refracted angles, material indexes
n, k across interface

In lossy media (k # 0), Snell’s law is complicated (complex)

(2



Boundary conditions (Larsen et al)
At boundary, in medium,
I =1,(2) = I (Q) + 1, (2) (1)
“Transmitted” radiation:
I () = [1 = R(p) ] B,(Ta)
“Reflected” radiation:
I, (@) = RG) 1), @ =0—2(;-Q)a

For diffusion, satisfy Eq.(1) in integral sense:

1
277/ dup(I—1I) =0
0

13/35

(5



Boundary conditions (air-glass interface)
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1+3T2 3 A o 2
E + <1 — 2r1) <3/1> (- VE) =4nn” B,(T3) /vy

- (kynVT) = by (Ty —T) 47 (1—2r1) nd /OVO dv [B,(T,) - B,(T)]

T, = external temperature

r1, 72 = moments of reflectivity R(v, n, k), r; = fol dp i’ R(p)
h,, = convection coefficient

(0, vp) = opaque interval (strong coupling) (Larsen et al)

Conventional Milne conditions: r1, 1, — 0

(2



(Interior) interface conditions (materials a, b) (WIP)
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Diffusion approximation:
(@) =20 pr30. (=ve
 4n 3K

Integrate over hemisphere in side b:

Vg 1+ 3r 2 R

—_ E —_— —_— . E p—

n2 [ <1 —2r1> <3;<; (B VE)
Vg.a 1—3r, 2 R

. Ea | : Ea

2 |- () (o) o ve)

In corresponding hemispheres, r; = fol dp i’ R(p)
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Interface conditions (materials a, b) (WIP)
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Radiation interface condition of form:

AE, + B, -VE, = AyEy + Byia - VE,

Challenge: As (ng, ko) — (n, kb), ensure discretization of
interface condition satisfies:
v

OE =V iVEij)g [47 n? B,(T)/v, — E]

T equation: pc, 0;T =V - k,,, VI, unaffected by interface
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Refractive index vs. energy
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Absorption coef vs. energy
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Reflectivity & moments r, r,Vvs.energy
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Results: RadCool test problem

Bouchut parameters:
pey = 2.201 - 107 (erg/cc °K)
km = 2.201-10° (erg/cm sec °K)
1D: 0< Z < 0.5 cm
Initial conditions: 7" = T, = 2500 °K
Boundary conditions:
Z =0.0: T, = 298.15°K (air)
Z = 0.5: symmetry
Display timehist: max & bdry T and T,

T4 = % Zszl v; E;/n?, o = Stefan-Boltzmann const
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RadCool problem; matter, radiation temperature time histories
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Matter and radiation temperatures vs. time
T T T
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On retaining O, F ...

For low T applications, 0, F is often ignored (Larsen et al)
pcy > 4aT? and At is “large” (¢ = oo assumption)

0:E may be of same order as other terms in F equation:
v=012¢V, k ~4-10* cm™?
At =107" s, vy ~ ¢, V ~ 1/£, £ = specimen size (1 cm)
(OE : V- 52VE) ~ (E/At : ¢E/3k6%) ~ (40 : 1)

L
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RadCool test problem; effect of retaining 0, F

Define M;, multiplier of 0;F term

Effect of My, on max radiation temperature max(7;):

t 10° 10711 10710 109 108
M, =10 | 2500 2464 2169 1560 1548
M;, =107 | 1548 1548 1548 1548 1548

0:E enables monitoring rapid changes in thermal fluxes

L
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Results: RadCool2 problem; LASNEX vs. ALE3D
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Two “materials”

Matl: 0.0 < Z < 0.5 cm; Bouchut parameters pc,, kn,
Mat2: 0.5 < Z < 1.0 cm; Bouchut parameters x107!

For Mat2, n, k vary linearly w/ T’; (100-5000), 10x increase
Initial conditions: T = T, = 2500 °K

Boundary conditions: T, = 298.15°K

g



RadCool2 Test problem; comparison of runs

LAS  A3D(,
max(7T,,) 2477.3 24785
max(7,) 1555.6 1549.4
Ty 2428.8  2404.2
T,; 14245 14113
Ty 1687.0 1578.7
T,, 1328.9 1286.2
E,,-1073 14704 1.4675
E,- 107 1.9469 1.9194
E.-107> 4.2706 4.5668

Table: Slab cooling problem; ALE3D, LASNEX comparison; 16
groups; t = 1 s; maximum, left-side, right-side temperatures (°K);
matter, radiation, coupled energies (J/radian)

(5
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Open questions
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Are interface conditions limiting case of Pomraning’s equations
for spatially varying n, k?
e Interface condition has abrupt change in n, k
e Pomraning assumes weak dependence w(r,t)
o w = cky/n, (k, = wave vector)
Include Vn term? [Vn = (0n/J0T) VT]
Include dv/ds? [= —(v/c) Oyn = —(v/c) (On/OT') (0T /Ot)]

If 9k/OT # 0 = On/OT #0 ...
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Temperature dependence of k

k(v) has a strong T' dependence for certain v ()
McLachlan, Meyer (M&M,1987): k = a(v) +b(v) T
M&M give a, b at select wavelengths: A € (9.6, 10.6) pm
Yang et al, (LLNL, 2009) present a, b for A = 4.6 pm

A
v (eV)
a(v)
b(v)

-1
“7{:25
Kr—1800

10.6
0.117
1.82-1072
1.01-107%
40.7
4.22

4.6
0.270
2.45.1074
6.39-107
1403
262

T in (°C), k=1 in (um)

For A = 10.6 um, k has 10x variation over 1800 degrees!
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k(M) Temperature dependence
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Refraction n, absorption k indexes are related

Cauchy integral theorem and assumptions:
e lim, o(n—1) < 1/v
e lim, (k) <1/v,

yield Kramers—Kronig relation:

n(v) = 1+= 73/ ”k(”/_)ci”z

If k£ depends on temperature, so does n

29/35
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That’s all, folks
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Results: 2D Laser irradiated disk (Vignes, Stolken)
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Domain: 0 < R <25, 0<72<1.0cm
Compare runs: Heat Conduction only, HC+rad
Radiation: 32 groups, Kitamura “cold” opacities
Laser source: I, exp(—,‘wZr Z)

Alzr = 10.6 pm, or A, = 4.6 um
Constant material pties:

ey = 103 (J/kg °K), k, =22 (W/m °K)

Kkt =6.7um (A =10.6), k' =516 um (\ = 4.6)
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Constant material properties

A =10.6 pm A=4.6pum

Comparison with and without radiation Comparison with and without radiation
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